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Abstract. The paper discusses a series of results concerning reproduc-
ing kernel Hilbert spaces, related to the factorization of their kernels. In
particular, it is proved that for a large class of spaces isometric multipli-
ers are trivial. One also gives for certain spaces conditions for obtaining
a particular type of dilation, as well as a classification of Brehmer type
submodules.
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1. Introduction

Reproducing kernel Hilbert space theory is an interdisciplinary subject that
arises from the interaction between function theory, system theory and op-
erator theory. The main aim of this paper is to investigate the structure of
factors of a kernel function and to relate it with reproducing kernel Hilbert
spaces and operators acting on them.

The precise definition of reproducing kernels is given in Section 2; they
may be either scalar or operator valued (the latter type being less familiar
to operator theorists). Let E be a Hilbert space and let B(E) be the set of
all bounded linear operators on E . If k1 is a scalar-valued kernel and K2

is a B(E)-valued kernel on Λ, then K = K1K2, where K1 = k1IE , is also
a B(E)-valued kernel on Λ. We intend to study in the sequel factorizations
of reproducing kernels of the above type and relate function and operator
theoretic results on HK with those of on Hk1 and HK2 .

The paper is organized as follows. In Section 2 and 3 we recall basic facts
concerning reproducing kernel Hilbert spaces, multipliers, and modules over
the polynomials. Section 4 is devoted to a presentation of tensor products
of reproducing kernel spaces, which are intrinsically related to products of
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kernels. This part is generally known, but we did not find a suitable reference
that would gather all the results we needed.

New results start with Section 5, in which we prove that for a large class
of reproducing kernel Hilbert spacesHK isometric multipliers are trivial. This
in particular implies that the reproducing kernel Hilbert spaces with proper
isometrically isomorphic shift invariant subspaces are rare.

In Section 6, we prove that a reproducing kernel Hilbert module HK

(see the definition in Section 6) defined over a domain Ω in Cn dilates to
Hk1 ⊗ E , for some Hilbert space E , if and only if K = k1L for some B(E)-
valued kernel L on Ω. Finally, in Section 7 we obtain a complete classification
of Brehmer type submodules of a large class of reproducing kernel Hilbert
modules; in particular, we prove that the Brehmer submodules and doubly
commuting submodules of the Hardy module H2(Dn)⊗ E are the same.

2. Preliminaries

In this section we briefly recall some basic facts concerning kernels and repro-
ducing kernel Hilbert spaces. As a general reference for reproducing kernel
Hilbert spaces, see [1] and [3]. For vector-valued reproducing kernel Hilbert
spaces, see [14, Chapter 10].

Let Λ be a set and E be a Hilbert space. An operator-valued function
K : Λ×Λ → B(E) is called a kernel (cf. [1], [14]) and is denoted by K(λ, µ) ≻
0, if

m∑
p,q=1

⟨K(xp, xq)ηq, ηp⟩E ≥ 0, (2.1)

for all {xj}mj=1 ⊆ Λ and {ηj}mj=1 ⊆ E and m ∈ N. In this case there exists a
Hilbert space HK of E-valued functions on Λ such that {K(·, λ)η : λ ∈ Λ, η ∈
E} is a total set in HK and

⟨f(λ), η⟩E = ⟨f,K(·, λ)η⟩HK
(η ∈ E , λ ∈ Λ). (2.2)

In particular, we have

∥K(·, λ)η∥2HK
= ⟨K(λ, λ)η, η⟩E = ∥K(λ, λ)1/2η∥E . (2.3)

Remark 2.1. If Φ : Λ → B(E∗, E) for some Hilbert spaces E , E∗, then it is easy
to see that K(λ, µ) := Φ(λ)Φ(µ)∗ is a kernel with values in B(E). Conversely,
if K : Λ × Λ → B(E) is a kernel, then we may write K(λ, µ) = Φ(µ)Φ(λ)∗,
with E∗ = HK and Φ(λ) = K(·, λ).

Let E be a Hilbert space and K1 and K2 be two B(E)-valued kernel on
Λ. We will write this sometimes as K(λ, µ) ≻ 0; then K1 ≺ K2 will mean
that (K2 −K1)(λ, µ) ≻ 0.

The following lemma is known, but for lack of an appropriate reference
we supply a proof for completeness.

Lemma 2.2. If K1(λ, µ) ≺ K2(λ, µ) and L1(λ, µ) ≺ L2(λ, µ), then

K1(λ, µ)⊗ L1(λ, µ) ≺ K2(λ, µ)⊗ L2(λ, µ).



Factorizations of Kernels and Reproducing Kernel Hilbert Spaces 3

Proof. Using (2.1), we have to prove that for nonnegative matricesA1, A2, B1, B2,
if A1 ≤ A2 and B1 ≤ B2, then A1 ⊗ B1 ≤ A2 ⊗ B2. One can suppose that
B1, B2 are invertible (otherwise one adds a small multiple of the identity and
pass to the limit). Therefore

B
−1/2
1 A1B

−1/2
1 ≤ I, B

−1/2
2 A2B

−1/2
2 ≤ I,

whence (since the tensor product of two contractions is a contraction)

(B
−1/2
1 ⊗B

−1/2
2 )(A1 ⊗A2)(B

−1/2
1 ⊗B

−1/2
2 ) ≤ I ⊗ I

(the identities acting on the corresponding spaces). It remains to multiply on

the right and on the left with B
1/2
1 ⊗B

1/2
2 .

The proof of the following simple lemma is left to the reader.

Lemma 2.3. Let K be a B(E)-valued kernel on Λ and HK the corresponding
reproducing kernel Hilbert space. Suppose ρ : Λ′ → Λ is a bijection. Then
H′ := {f ◦ ρ : f ∈ H} endowed with the scalar product

⟨f ◦ ρ, g ◦ ρ⟩H′ := ⟨f, g⟩H,

is a reproducing kernel Hilbert space of functions on Λ′, with the B(E)-valued
kernel

K ′(λ′, µ′) = K(ρ(λ′), ρ(µ′)).

Moreover, the map f 7→ f ◦ ρ is unitary from H to H′.

Let E1 and E2 be two Hilbert spaces and Kj : Λ× Λ → B(Ej), j = 1, 2,
be two kernels. A function φ : Λ → B(E1, E2) is said to be a multiplier if

φf ∈ HK2 for every f ∈ HK1 .

We will denote by M(HK1 ,HK2) the space of all multipliers from HK1 into
HK2 . When K1 = K2, we will simply denote it by M(HK1). From the closed
graph theorem it follows that each multiplier φ ∈ M(HK1 ,HK2) induces a
bounded multiplication operator Mφ from HK1 to HK2 , where

(Mφf)(λ) = (φf)(λ) = φ(λ)f(λ) (f ∈ HK1 , λ ∈ Λ).

For each φ ∈ M(HK1 ,HK2), λ ∈ Λ and η ∈ E2 we have

M∗
φ(K2(·, λ)η) = K1(·, λ)φ(λ)∗η. (2.4)

We shall call a multiplier φ ∈ M(HK1 ,HK2) partially isometric or iso-
metric if the induced multiplication operatorMφ has the corresponding prop-
erty.

It will be the case sometimes below that the same function ϕ : Λ → B(E)
will be a multiplier for different reproducing kernel Hilbert spaces with B(E)-
valued kernels. In this case we will write the multiplier MK

ϕ to make the

kernel (and the space) explicit.
A criterion for multipliers is given in [14, Theorem 10.22]: ϕ : Λ →

B(E1, E2) is a multiplier if and only if there exists c > 0 such that

ϕ(λ)K1(λ, µ)ϕ(µ)
∗ ≺ c2K2(λ, µ), (2.5)
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and the smallest such c is precisely the norm of Mϕ.
An important particular case are the quasiscalar kernels. These are

B(E)-valued kernels of the form

K(λ, µ) = k(λ, µ)IE (λ, µ ∈ Λ),

where k is a scalar-valued kernel on Λ and E is a Hilbert space. It follows
then from (2.3) that

∥K(·, λ)η∥HK
= k(λ, λ)∥η∥E . (2.6)

We also note that as Hilbert spaces, one has

HK = Hk ⊗ E .
Therefore, for a fixed orthonormal basis {ej} in E , the general form of F ∈ HK

is given by

F =
∑
j

fj ⊗ ej ,

with fj ∈ Hk and
∑

j ∥fj∥2Hk
< ∞.

Now let k be a scalar kernel and λ ∈ Λ. By virtue of (2.2), it follows
that the functions in Hk vanishing at λ are given by

Hk ⊖ {k(·, λ)} = {f ∈ Hk : f(λ) = 0}.
For quasiscalar kernels, we have the following:

Lemma 2.4. Let k be a scalar kernel, E a Hilbert space, {ej} an orthonormal
basis in E, and K = kIE the corresponding quasiscalar kernel. If λ ∈ Λ, then
HK ⊖ {k(·, λ)x : x ∈ E} is given by

{F =
∑
j

fj ⊗ ej : fj ∈ Hk, fj(λ) = 0,
∑
j

∥fj∥2Hk
< ∞}.

Proof. Let us denote by X the space in the right hand side of the equality.
If F ∈ X, then it is immediate that F is orthogonal to any function k(·, λ)x.

Conversely, suppose g =
∑

j gj ⊗ ej is orthogonal to X, that is,

0 = ⟨g, F ⟩ =
∑
j

⟨gj , fj⟩,

for all F =
∑

j fj ⊗ ej ∈ X. In particular, each gj is orthogonal to the space

{f ∈ Hk : f(λ) = 0}, and is thus a scalar multiple of k(·, λ). Therefore
g = k(·, λ)x for some x ∈ E .

3. Kernels and modules

We now consider a bounded domain Ω in Cn and a B(E)-valued kernel K on
Ω. In what follows, z will denote the element (z1, . . . , zn) in Cn.

Let K(z,w) be holomorphic in {z1, . . . , zn} and anti-holomorphic in
{w1 . . . , wn} and HK be the corresponding reproducing kernel Hilbert space.
Then HK is a set of E-valued holomorphic functions on Ω and

{K(·,w)η : w ∈ Ω, η ∈ E},
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is a total set in HK , that is,

HK = span{K(·,w)η : w ∈ Ω, η ∈ E} ⊆ O(Ω, E).

In what follows, we always assume that for any λ ∈ Λ the function
K(·, λ) : Ω → B(E) is not identically zero.

We say that HK is a reproducing kernel Hilbert module if

zjHK ⊆ HK (j = 1, . . . , n).

In this case the multiplication operator tuple (Mz1 , . . . ,Mzn), defined by

(Mzjf)(w) = wjf(w) (w ∈ Ω, f ∈ HK),

induces a C[z]-module action on HK as follows (cf. [6]):

p · h = p(Mz1 , . . . ,Mzn)h (p ∈ C[z1, . . . , zn], h ∈ HK).

A closed subspace S of HK is said to be a submodule if S is Mzj -invariant,
j = 1, . . . , n. Here the C[z]-module action on S is induced by the restriction
of the multiplication operator tuple Mz|S = (Mz1 |S , . . . ,Mzn |S).

Note also that a submodule of a reproducing kernel Hilbert module is
also a reproducing kernel Hilbert module.

IfHK is a reproducing kernel Hilbert module over C[z], and the constant
functions η ∈ E belong to HK , then of course C[z]E ⊂ HK . The following
lemma is often used in concrete cases.

Lemma 3.1. Suppose HKi ⊆ O(Ω, Ei), i = 1, 2 are reproducing kernel Hilbert
modules over C[z], and T : HK1 → HK2 satisfies

TMzj = MzjT (j = 1, . . . , n).

If C[z]E ⊂ HK1 and is dense therein, then T is a multiplier.

Proof. Define Φ : Ω → B(E1, E2) by Φ(z)η = T (η), where T (η) is the action
of T on the constant function z 7→ η ∈ E1. The intertwining assumption in
the statement implies that T (p(z)η) = MΦP (z)η for any polynomial p and
η ∈ E . If C[z]E is dense in HK1 , it follows that T = MΦ.

Let HKi ⊆ O(Ω, Ei), i = 1, 2, be reproducing kernel Hilbert modules
over C[z]. We say that they are unitarily equivalent if there exists a unitary
U : HK1 → HK2 that satisfies

UMzj = MzjU (j = 1, . . . , n).

Corollary 3.2. Suppose HKi ⊆ O(Ω, Ei), i = 1, 2 are reproducing kernel
Hilbert modules over C[z], and C[z]E ⊂ HK1 and is dense therein. Then
HK1 and HK2 are unitarily equivalent if and only if there exists a unitary
multiplier MΦ such that U = MΦ.
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4. Tensor products of kernels

Our purpose in this section is to explore the relationship between kernels and
functions defined on a set Λ and associated objects defined on the diagonal
of Λ× Λ. In the scalar case one can use as references [3, 6, 8]

Let Ei are Hilbert spaces and Ki are B(Ei)-valued kernels on Λ, i = 1, 2.
Then the Hilbert tensor product HK1 ⊗HK2 is a reproducing kernel Hilbert
space on Λ× Λ, with the B(E1 ⊗ E2)-valued kernel

(K1 ⊗K2)((λ1, λ2), (µ1, µ2)) = K1(λ1, µ1)⊗K2(λ2, µ2).

More precisely, the map defined on simple tensors by f ⊗ g 7→ f(λ1)g(λ2)
extends to a unitary operator from HK1 ⊗HK2 onto HK1⊗K2 , which allows
the identification of these two spaces.

For clarity, it is useful to make apparent the argument of functions,
typically λ ∈ Λ and (λ1, λ2) ∈ Λ× Λ. So, for instance, we will write K(λ, µ)
rather than K(·, µ) in order to denote the function λ 7→ K(λ, µ).

Now let ∆ = {(λ, λ) : λ ∈ Λ} be the diagonal of Λ×Λ and let N be the
set of all functions in HK1 ⊗HK2 vanishing on ∆, that is,

N = {g ∈ Hk1 ⊗Hk2 : g(λ, λ) = 0, λ ∈ Λ}.
Define also δ : Λ → ∆ to be the bijection

δ(λ) = (λ, λ) (λ ∈ Λ).

The scalar case of the next lemma appears in [3, I.8]; we include the proof of
the vector case for completion.

Lemma 4.1. With the above notations,

(K1 ∗K2)(λ, µ) := K1(λ, µ)⊗K2(λ, µ).

is a B(E1 ⊗ E2)-valued reproducing kernel for the Hilbert space of functions
on Λ defined by {f ◦ δ : f ∈ N⊥}, endowed with the scalar product

⟨f ◦ δ, g ◦ δ⟩H := ⟨f, g⟩N⊥ .

The map f 7→ f ◦ δ is unitary from N⊥ to HK1∗K2 .

Proof. Note first that N⊥ is spanned by the set

S := {K1(λ1, µ)x1 ⊗K2(λ2, µ)x2 : µ ∈ Λ, x1 ∈ E1, x2 ∈ E2}.
Indeed, for any F ∈ N we have

⟨F,K1(λ1, µ)x1 ⊗K2(λ2, µ)x2⟩ = ⟨F (µ, µ), x1 ⊗ x2⟩ = 0, (4.1)

whence S ⊂ N⊥. On the other hand, if F ∈ S⊥, then (4.1) is true for all
µ ∈ Λ and x1 ∈ E1, x2 ∈ E2. By linearity we may deduce that ⟨F (µ, µ), ξ⟩ = 0
for all ξ ∈ E1 ⊗ E2, whence F ∈ N .

It follows then easily that the restrictions of the functions in N⊥ to
∆ form a reproducing kernel Hilbert space, with kernel given by K1(λ, µ)⊗
K2(λ, µ). The proof is finished by applying Lemma 2.3, with ρ = δ.

The proof of the above lemma yields the following useful result:
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Corollary 4.2. The formula (πF )(λ) := F (λ, λ) defines a coisometry from
HK1 ⊗HK2 to HK1∗K2 , with kerπ = N . Also,

π∗((K1 ∗K2)(λ, µ)(x1 ⊗ x2) = K1(λ1, µ)x1 ⊗K2(λ2, µ)x2.

Proof. We observe that, for any xj , yj ∈ Ej , j = 1, 2 and µ, ν ∈ Λ,

⟨K1(λ1, µ)x1 ⊗K2(λ2, µ)x2,K1(λ1, ν)y1 ⊗K2(λ2, ν)y2⟩
= ⟨K1(ν, µ)x1, y1⟩⟨K2(ν, µ)x2, y2⟩
= ⟨K1(λ, µ)x1 ⊗K2(λ, µ)x2,K1(λ, ν)y1 ⊗K2(λ, ν)y2⟩.

Then X : HK1∗K2 → HK1 ⊗HK2 defined by

π∗((K1 ∗K2)(λ, µ)(x1 ⊗ x2) = K1(λ1, µ)x1 ⊗K2(λ2, µ)x2,

for xj ∈ Ej , j = 1, 2, and µ ∈ Λ, is an isometry. By the proof of the previ-
ous lemma we have kerX∗ = (ran L)⊥ = N and the result now follows by
defining π = X∗.

In the scalar case, the previous result is [8, Theorem 1.1].
Suppose now that F1 : Λ → B(E1) is a multiplier on HK1 and F2 :

Λ → B(E2) is a multiplier on HK2 . Then the F1 ⊗ F2 : Λ ⊗ Λ → B(E1 ⊗ E2)
is a multiplier on HK1⊗K2 , and MF1⊗F2 = MF1 ⊗ MF2 . The space N is
invariant to multipliers on HK1⊗K2 , and therefore N⊥ is invariant to adjoints
of multipliers.

Lemma 4.3. If F1 is a multiplier on HK1 and F2 is a multiplier on HK2 , then
the function F1∗F2 : Λ → B(E1⊗E2), defined by (F1∗F2)(λ) = F1(λ)⊗F2(λ),
is a multiplier on HK1∗K2 . Moreover

MK1∗K2

F1∗F2
= π(MK1

F1
⊗MK2

F2
)π∗. (4.2)

Proof. The assumption implies that (2.5) is satisfied for the two multipliers,
so

F1(λ)K1(λ, µ)F1(µ)
∗ ≺ c21K1(λ, µ), F2(λ)K2(λ, µ)F2(µ)

∗ ≺ c22K2(λ, µ).

By Lemma 2.2, we have

(F1(λ)⊗ F2(λ))
(
K1(λ, µ)⊗K2(λ, µ)

)
(F1(µ)⊗ F2(µ))

∗

≺ c21c
2
2

(
K1(λ, µ)⊗K2(λ, µ)

)
,

which means precisely that

(F1 ∗ F2)(λ)(K1 ∗K2)(λ, µ)(F1 ∗ F2)(µ) ≺ c21c
2
2(K1 ∗K2)(λ, µ).

Again using (2.5) it follows that F1 ∗ F2 is a multiplier on HK1∗K2 (of norm
at most c1c2).

To obtain formula (4.2), we will check its adjoint on the reproducing
kernels (K1 ∗ K2)(λ, µ)(x1 ⊗ x2), where µ ∈ Λ, x1 ∈ E1, x2 ∈ E2 are fixed,
while λ ∈ Λ is the variable. According to (2.4), we have

(MK1∗K2

F1∗F2
)∗(K1 ∗K2)(λ, µ)(x1 ⊗ x2)K1(λ, µ)

= K1(λ, µ)F1(µ)
∗x1 ⊗K2(λ, µ)F2(µ)

∗x1.
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On the other hand, by Corollary 4.2

π∗(K1 ∗K2)(λ, µ)(x1 ⊗ x2) = K1(λ1, µ)x1 ⊗K2(λ2, µ)x2.

Then, applying again (2.4),(
(MK1

F1
)∗ ⊗ (MK2

F2
)∗
)
π∗((K1 ∗K2)(λ, µ)(x1 ⊗ x2)

=
(
K1(λ1, µ)F1(µ)

∗x1

)
⊗

(
K2(λ2.µ)F2(µ)

∗x2

)
,

Therefore

π
(
(MK1

F1
)∗ ⊗ (MK2

F2
)∗
)
π∗((K1 ∗K2)(λ, µ)(x1 ⊗ x2)

=
(
K1(λ, µ)F1(µ)

∗x1

)
⊗

(
K2(λ, µ)F2(µ)

∗x2

)
,

and (4.2) is thus proved.

If one of the kernels is scalar-valued, say dim E2 = 1, the kernel K1 ∗ k2
becomes simply the product k2K1. Then Lemma 4.3 says that f2F1 is a
multiplier on Hk2K1 .

5. Isometric Multipliers

In this section, we study the isometric multipliers of reproducing kernel
Hilbert spaces corresponding to quasiscalar kernels, generalizing results known
about certain concrete kernels. It is an open problem to extend them to
non-quasiscalar kernels, for which the methods used here do not seem to be
appropriate.

Let k be a scalar-valued kernel on a set Λ and let Hk be the correspond-
ing reproducing kernel Hilbert space. For each λ and µ in Λ, define a relation
∼k as follows: λ ∼k µ if there exist m ∈ N and {λ1, . . . , λm} ⊆ Λ such that

λ1 = λ, λm = µ, and k(λj , λj+1) ̸= 0 for 1 ≤ j ≤ m− 1.

Then ∼k is an equivalence relation on Λ. In particular, if λ, µ are in two
different equivalence classes, then k(λ, µ) = 0.

Suppose k1, k2 are two scalar-valued reproducing kernels on Λ, K1 =
k1IE1 , K2 = k2IE2 . If ϕ is a multiplier on HK1 , it follows from Lemma 4.3,
applied for F1 = ϕ and F2 = I, that ϕ ∗ I is also a multiplier of HK1∗K2 , and

∥MK1∗K2

ϕ∗I ∥ ≤ ∥MK1

ϕ ∥. (5.1)

Theorem 5.1. Let k1, k2 be two scalar-valued reproducing kernels on Λ, and
K1 = k1IE1 , K2 = k2IE2 . Denote k = k1k2, K = K1 ∗K2, and suppose the
following conditions are satisfied:

1. the map MK1

ϕ 7→ MK
ϕ∗I from M(HK1) to M(HK) preserves the norm;

2. Hk1 ∩Hk2 is dense in Hk1 .

If MK
ϕ∗I is an isometric multiplier in M(HK), then it is a constant isometry

on each of the equivalence classes of ∼k1 .
In particular, if k1(λ, µ) ̸= 0 for any λ, µ, then ∼k1 has a single equiv-

alence class, and the conclusion becomes that φ is a constant isometry.



Factorizations of Kernels and Reproducing Kernel Hilbert Spaces 9

Proof. We use the notation of the previous section; so ∆ = {(λ, λ) : λ ∈ Λ},
N = {F ∈ HK1 ⊗ HK2 : F (λ, λ) = 0, λ ∈ Λ}, and (πF )(λ) = F (λ, λ)

defines a coisometry from HK1 ⊗HK2 to HK with kerπ = N . Then MK1

ϕ a

contraction by assumption (1), and we have by Lemma 4.3

MK
φ⊗I = π(MK1

φ ⊗ IHK2
)π∗, (5.2)

whence

MK
φ⊗Iπ = π(MK1

φ ⊗ IHK2
)π∗π = π(MK1

φ ⊗ IHK2
)PN⊥ .

Now for F ∈ N⊥ and using the fact that MK
φ⊗I is an isometry, we have

∥π(MK1
φ ⊗ IHK2

)F∥ = ∥MK
φ πF∥ = ∥πF∥ = ∥F∥,

where the last equality follows from the fact that π is an isometry on (kerπ)⊥.
Hence, since MK1

φ ⊗ Ik2 is a contraction, we have

∥F∥ ≥ ∥(MK1
φ ⊗ IHK2

)F∥ ≥ ∥π(MK1
φ ⊗ IHK2

)F∥ = ∥F∥,
and hence

∥π(MK1
φ ⊗ IHK2

)F∥ = ∥(MK1
φ ⊗ IHK2

)F∥.
Consequently, (MK1

φ ⊗ IHK2
)F ∈ (kerπ)⊥ = N⊥, that is,

(MK1
φ ⊗ IHK2

)N⊥ ⊆ N⊥.

In particular, since k1(λ1, µ)x1 ⊗ k2(λ2, µ)x2 ∈ N⊥ for µ ∈ Λ, x1 ∈ E1,
x2 ∈ E2 (here λ1, λ2 are the argument variables), we have

MK1
φ k1(λ1, µ)x1 ⊗ k2(λ2, µ)x2 ∈ N⊥ (µ ∈ Λ, x1 ∈ E1, x2 ∈ E2).

Now, if f, g ∈ Hk1 ∩Hk2 , y1 ∈ E1, y2 ∈ E2, then
f(λ1)y1 ⊗ g(λ2)y2 − g(λ1)y1 ⊗ f(λ2)y2 ∈ N ,

and therefore

0 = ⟨(MK1
φ k1(λ1, µ)x1 ⊗ k2(λ2, µ))x2, f(λ1)y1 ⊗ g(λ2)y2

− g(λ1)y1 ⊗ f(λ2)y2⟩Hk1
⊗Hk2

= ⟨φ(λ1)k1(λ1, µ)x1, f(λ1)y1⟩HK1
⟨k2(λ2, µ)x2, g(λ2)y2⟩HK2

− ⟨φ(λ1)k1(λ1, µ), g(λ1)y1⟩HK1
⟨k2(λ2, µ)x2, f(λ2)y2⟩HK2

= ⟨φ(λ1)k1(λ1, µ)x1, f(λ1)y1⟩HK1
g(µ)⟨x2, y2⟩−

− ⟨φ(λ1)k1(λ1, µ), g(λ1)y1⟩HK1
f(µ)⟨x2, y2⟩.

Applying assumption (2), the above formula is valid by continuity for any
f, g ∈ Hk1 .

Fix µ ∈ Λ. Take f ⊥ k1(λ, µ) (so f(µ) = 0) and g = k1(·, µ) (so
g(µ) ̸= 0); also, assume ⟨x2, y2⟩ ̸= 0. It follows from the preceding equation
that

⟨φ(λ1)k1(λ1, µ)x1, f(λ1)y1⟩HK1
= 0

for all x1, y1 ∈ E1. Therefore the function φ(λ1)k1(λ1, µ)x1 = Mk1
φ k1(λ1, µ)x1

is orthogonal to the space spanned by the functions f(λ1)y1 ∈ HK1 with
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f ∈ Hk1 , f(µ) = 0, and y1 ∈ E1. If we identify HK1 with Hk1 ⊗ E1, this
space becomes the space spanned by f ⊗ y1, f(µ) = 0. We may then apply
Lemma 2.4 to conclude that

φ(λ1)k1(λ1, µ)x1 = k1(λ1, µ)x
′
1

for some x′
1 ∈ E1. But we have, for all y ∈ E1,

⟨k1(λ1, µ)x
′
1, k1(λ1, µ)y⟩ = ⟨Mk1

φ k1(λ1, µ)x1, k1(λ1, µ)y⟩

= ⟨k1(λ1, µ)x1, (M
k1
φ )∗k1(λ1, µ)y⟩

= ⟨k1(λ1, µ)x1, φ(µ)
∗k1(λ1, µ)y⟩

= ⟨φ(µ)k1(λ1, µ)x1, k1(λ1, µ)y⟩.

Therefore

k1(λ1, µ)x
′
1 = φ(λ1)k1(λ1, µ)x1 = φ(µ)k1(λ1, µ)x1

for all x1 ∈ E1. In this relation λ is still the argument of the functions in the
two sides of the equality, but we may deduce from here the pointwise equality

φ(λ1)k1(λ1, µ) = φ(µ)k1(λ1, µ).

for all λ1, µ ∈ Λ. So, if k1(λ1, µ) ̸= 0, then φ(λ1) = φ(µ). From the definition
of ∼k1 it follows that on each of its equivalence classes the multiplier ϕ on
HK1 is a constant operator. Regarding again HK1 as Hk1 ⊗E1, it follows that
MK1

ϕ = IHk1
⊗ Φ for some Φ ∈ B(E1). Therefore, in order for MK1

ϕ to be an
isometry, Φ must be an isometry; this finishes the proof of the theorem.

Corollary 5.2. Let k1, k2 be two scalar-valued reproducing kernels on Λ, and
K1 = k1IE1 , K = k1k2IE1 . Suppose the following conditions are satisfied:

1. the map MK1

ϕ 7→ MK
ϕ from M(HK1) to M(HK) is surjective and pre-

serves the norm;
2. Hk1 ∩Hk2 is dense in Hk1 .

Then any isometric multiplier in M(HK) is a constant isometry on each of
the equivalence classes of ∼k1 .

There is an important case in which condition (1) in the above corollary
is satisfied, which we will present as a separate statement.

Corollary 5.3. Let Λ = Ω be a domain in Cn and k1, k2 are analytic in the
first variable, K1 = k1IE1 , K = k1k2IE1 . Suppose the following conditions are
satisfied:

1. M(HK1) coincides with the uniformly bounded B(E1)-valued analytic
functions and for any ϕ ∈ M(HK1) we have

∥Mϕ∥HK1
= sup

λ
∥ϕ(λ)∥; (5.3)

2. Hk1 ∩Hk2 is dense in Hk1 .

Then any isometric multiplier in M(HK) is a constant isometry on each of
the equivalence classes of ∼k1 .
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Proof. Let ϕ ∈ M(HK). Then by (2.4), we have

sup
λ

∥ϕ(λ)∥ ≤ ∥MK
ϕ ∥B(HK).

Hence condition (1) imply that MK1

ϕ ∈ M(HK1). From (5.1) it follows that

∥MK1

ϕ ∥ = ∥MK
ϕ ∥. We may then apply Corollary 5.2 to conclude the proof.

Remark 5.4. Under the same assumptions and notations as in Corollary 5.3,
suppose also that polynomials are in Hk1 as well as in Hk2 . Then a sufficient
condition for (2) is that they are dense in Hk1

.

Using now Corollary 3.2, it is easy to derive the following result.

Theorem 5.5. Let E be a Hilbert space, Ω be a domain in Cn and Hk1 , Hk2 ⊆
O(Ω) are reproducing kernel Hilbert spaces. Let K1 = k1IE and K = k1k2IE .
Suppose the following conditions are satisfied:

1. Hk1 is a reproducing kernel Hilbert module over C[z].
2. C[z] ⊆ Hk1 ∩Hk2 and C[z] is dense in Hk1 .
3. M(HK1) = H∞

B(E)(Ω) and for each φ ∈ M(HK1) we have

∥Mϕ∥HK1
= sup

λ∈Ω
∥ϕ(λ)∥.

4. z1 ∼k1
z2 for any z1, z2 ∈ Ω. In particular, this is true if k1(z1, z2) ̸= 0

for any z1, z2 ∈ Ω.

Let φ ∈ M(HK) be a multiplier and S be a submodule of HK . Then
(i) Mφ is an isometric multiplier if and only if there exists an isometry

V ∈ B(E) such that Mφ = IHk1k2
⊗ V .

(ii) S ⊆ HK is unitarily equivalent to HK if and only if there exists a

closed subspace Ẽ of E such that S = Hk1k2 ⊗ Ẽ.

Example. Let n ≥ 1, α > −1, and consider the space

A2
α(Bn) :=

{
f holomorphic in Bn : ∥f∥α =

∫
Bn

|f(z)|2(1−|z|2)α dV (z) < ∞
}

(5.4)
where dV is the volume measure on Bn. It is usually called the weighted
Bergman space. Moreover, A2

α(Bn) = Hg, where the reproducing kernel g is
given by the formula

gα(z,w) = (1−
n∑

i=1

ziw̄i)
−α−n−1, z,w ∈ Bn (5.5)

(see, for instance, [19, Ch. 2]).
We may apply Theorem 5.5 to the reproducing kernel module A2

α(Bn).
We take

k1(z,w) = (1−
n∑

i=1

ziw̄i)
−n, k1(z,w) = (1−

n∑
i=1

ziw̄i)
−α−1.

Then k1 is the reproducing kernel of the Hardy space on the unit ball, while
k2 is positive definite by the binomial formula. The hypotheses of the theorem
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are easily checked; the only nonobvious one, (3), is a consequence of the usual
formula for the Hardy space norm (see [19, Ch. 4]. Therefore:

(i) Mφ is an isometry if and only if Mφ = IA2
α(Bn)⊗V for some isometry

V ∈ B(E).
(ii) S is unitarily equivalent to A2

α(Bn)⊗E if and only if S = A2
α(Bn)⊗Ẽ

for some closed subspace Ẽ of E .
In particular, (i) generalizes Proposition 4.2 in [13], which proves the

result for the case α = 0 (the usual Bergman space). Part (ii) is related to
the rigidity of submodules of weighted Bergman modules (see [7, 10, 15, 16]).

6. Factorizations of Kernels and dilations

Suppose Ω is a domain in Cn. A scalar-valued reproducing kernel g : Ω×Ω →
C is said to be a good kernel if:

1. g is analytic in the first variable;
2. Hg is a reproducing kernel Hilbert module;
3.

n
∩

j=1
ker(M∗

zj − w̄jIHg ) = Cg(·,w) (w ∈ Ω);

4. there exists a w0 ∈ Ω such that

g(·,w0) ≡ 1.

We say then that Hg ⊆ O(Ω,C) is a good reproducing kernel Hilbert
module.

The definition of a good kernel is motivated by the study of sharp kernels
introduced by Agrawal and Salinas [2] (see also Cowen and Douglas [4]).

Note that if g is a scalar valued kernel on a set Λ and the function g(·, λ0)
is non-vanishing for some λ0 ∈ Λ then one can assume, after renormalizing,
that g(·, λ0) ≡ 1.

Let Hg be a good reproducing kernel Hilbert module over Ω and HK ⊆
O(Ω, E) be a reproducing kernel Hilbert module over C[z]. We say that Mz =
(Mz1 , . . . ,Mzn) on HK dilates (cf. [5], [17]) to (Mz1 ⊗ IE , . . . ,Mzn ⊗ IE) on
Hg ⊗E , or HK dilates to Hg ⊗E , for some Hilbert space E , if there exists an
isometry Π : H → Hg ⊗ E such that

(M∗
zi ⊗ IE)Π = ΠM∗

zi (i = 1, . . . , n).

Our main result in this section is the following theorem which relates
dilation of a reproducing kernel Hilbert module to a good reproducing Hilbert
module with factorizations of kernels.

Theorem 6.1. Let E and E∗ be two Hilbert spaces and Hg be a good reproducing
kernel Hilbert module on Ω and HK ⊆ O(Ω, E) be a reproducing kernel Hilbert
module over C[z]. Then the following conditions are equivalent:

1. HK dilates to Hg ⊗ E∗.
2. There exists a holomorphic function Φ : Ω → B(E∗, E) such that

K(z,w) = g(z,w)Φ(z)Φ(w)∗ (z,w ∈ Ω).
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Proof. Assume (3) holds. Then for each z,w ∈ Ω and η, ζ ∈ E∗, we have

⟨K(·,w)η,K(·, z)ζ⟩HK
= ⟨K(z,w)η, ζ⟩E∗

= ⟨g(z,w)Φ(z)Φ(w)∗η, ζ⟩E∗

= g(z,w)⟨Φ(z)Φ(w)∗η, ζ⟩E∗

= ⟨g(·,w), g(·,z)⟩Hg ⟨Φ(w)∗η,Φ(z)∗ζ⟩E∗

= ⟨g(·,w)⊗ Φ(w)∗η, g(·, z)⊗ Φ(z)∗ζ⟩Hg⊗E∗ .

This allows us to define an isometry Π : HK → Hg ⊗ E∗ by

Π(K(·,w)η) = g(·,w)⊗ Φ(w)∗η (w ∈ Ω, η ∈ E∗).

Using this, on one hand, we have

(ΠM∗
zj )(K(·,w)η) = Π(w̄jK(·,w)η)

= w̄jΠ(K(·,w)η)

= w̄j(g(·,w)⊗ Φ(w)∗η),

and on the other hand, by (2.4) , we have

(Mzj ⊗ IE∗)
∗Π(K(·,w)η) = (Mzj ⊗ IE∗)

∗(g(·,w)⊗ Φ(w)∗η)

= w̄j(g(·,w)⊗ Φ(w)∗η),

where η ∈ E and w ∈ Ω. Therefore

(Mzj ⊗ IE∗)
∗Π = ΠM∗

j (j = 1, . . . , n), (6.1)

and hence HK dilates to Hg ⊗ E∗. This proves (1).
Assume now (1) hold. Then there exists an isometry Π : HK → Hg⊗E∗

such that (6.1) hold. Then for w ∈ Ω and η ∈ E and j = 1, . . . , n, we have

(Mzj ⊗ IE∗)
∗(ΠK(·,w)η) = ((Mzj ⊗ IE∗)

∗Π)(K(·,w)η)

= ΠM∗
zj (K(·,w)η)

= w̄j(ΠK(·,w)η).

In particular,

Π(K(·,w)η) ∈
n
∩

j=1
ker

(
(Mzj ⊗ IE∗)

∗ − w̄jIHg⊗E∗

)
= g(·,w)⊗ E∗.

Then for each w ∈ Ω there exists a linear map Φ(w) : E∗ → E such that

Π(K(·,w)η) = g(·,w)⊗ Φ(w)∗η (η ∈ E).

Observe that if w ∈ Ω and η ∈ E we have

∥Φ(w)∗η∥E∗ =
1

∥g(·,w)∥Hg

∥Π(K(·,w)η)∥Hg⊗E∗

≤ 1

∥g(·,w)∥Hg

∥(K(·,w)η)∥HK

≤ 1

∥g(·,w)∥Hg

∥K(w,w)
1
2 ∥B(E)∥η∥E ,
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where the last inequality follows from the fact that

∥(K(·,w)η)∥2HK
= ⟨K(·,w)η,K(·,w)η⟩HK

(by(2.2))

= ⟨K(w,w)η, η⟩E
= ∥K(w,w)

1
2 η∥2E .

Therefore Φ(w)∗, w ∈ Ω, is a bounded linear operator. For η, ζ ∈ E we now
have

⟨K(z,w)η, ζ⟩E = ⟨K(·,w)η,K(·,z)ζ⟩HK

= ⟨Π(K(·,w)η),Π(K(·, z)ζ)⟩Hg⊗E∗

= ⟨g(·,w)⊗ Φ(w)∗η, g(·, z)⊗ Φ(z)∗ζ⟩Hg⊗E∗

= g(z,w)⟨Φ(w)∗η,Φ(z)∗ζ⟩E∗

= ⟨g(z,w)Φ(z)Φ(w)∗η, ζ⟩E∗ ,

and hence

K(z,w) = g(z,w)Φ(z)Φ(w)∗ (z,w ∈ Ω).

Finally, since

⟨Φ(w)ζ, η⟩E = ⟨ζ,Φ(w)∗η⟩E∗

= ⟨g(·,w0)⊗ ζ, g(·,w)⊗ Φ(w)∗η⟩Hg⊗E∗

= ⟨g(·,w0)⊗ ζ,Π(K(·,w)η)⟩Hg⊗E∗

= ⟨Π∗(g(·,w0)⊗ ζ),K(·,w)η⟩Hg⊗E∗ ,

for each η ∈ E and ζ ∈ E∗, and since w 7→ K(·,w) is anti-holomorphic,
we conclude that w 7→ Φ(w) is holomorphic. This shows that (3) holds and
completes the proof of the theorem.

The next corollary follows by taking into account Remark 2.1.

Corollary 6.2. Let E be a Hilbert spaces and Hg be a good reproducing kernel
Hilbert module on Ω and HK ⊆ O(Ω, E) be a reproducing kernel Hilbert
module over C[z]. Then the following conditions are equivalent:

1. There exists a Hilbert space E∗ such that the equivalent conditions in the
statement of Theorem 6.1 hold.

2. There exists a B(E)-valued kernel L on Ω, holomorphic in the first and
anti-holomorphic in the second variable, such that K = gL.

Theorem 6.1 and Corollary 6.2 represent a generalization of the dilation
results of quasi-free Hilbert modules (see Theorems 1 and 2 in [9]) to repro-
ducing kernel Hilbert modules. Let us also note that, moreover, our argument
does not rely on localizations of Hilbert modules.

7. submodules of reproducing kernel Hilbert modules

Suppose p(z,w) =
∑

k,l∈Nn aklz
kw̄l is a polynomial in (z1, . . . , zn) and

(w̄1, . . . , w̄n). For a commuting tuple T = (T1, . . . , Tn) on a Hilbert space
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H, we define p(T ,T ∗) by

p(T ,T ∗) =
∑

k,l∈Nn

aklT
kT ∗l.

Note the order of the factors, which is important since we have not assumed
that the tuple T is doubly commuting.

We will often consider in this section a good kernel g with the property
that g−1 is a polynomial. We will then write

g−1(z,w) =
∑

k,l∈Nn

aklz
kw̄l,

having always in mind that the sum is finite.
The following standard relationship between factorized kernels and oper-

ator positivity of multiplication tuples on reproducing kernel Hilbert modules
is well known (cf. Theorem 4 in [9]).

Proposition 7.1. Let HK ⊆ O(Ω, E) be a reproducing kernel Hilbert module
and g be a good kernel on Ω with g−1 a polynomial. Then g−1(Mz,Mz) ≥ 0
on HK if and only if there exists a kernel L on Ω such that K = gL.

Proof. It is enough to prove that g−1(Mz,M
∗
z ) ≥ 0 if and only if g−1K is

positive definite. Indeed, for {wj}mj=1 ⊆ Ω, {ηj}mj=1 ⊆ E and m ∈ N, we have

m∑
i,j=1

⟨(g−1K)(wi,wj)ηj , ηi⟩ =
m∑

i,j=1

⟨g−1(wi,wj)K(wi,wj)ηj , ηi⟩

=

m∑
i,j=1

∑
k,l∈Nn

aklw
kw̄l⟨K(·,wj)ηj ,K(·,wi)ηi⟩

=
m∑

i,j=1

∑
k,l∈Nn

akl⟨M∗l
z K(·,wj)ηj ,M

∗k
z K(·,wi)ηi⟩

=
m∑

i,j=1

⟨(
∑

k,l∈Nn

aklM
k
z M

∗l
z )K(·,wj)ηj ,K(·,wi)ηi⟩

=
m∑

i,j=1

⟨g−1(Mz,M
∗
z )K(·,wj)ηj ,K(·,wi)ηi⟩.

This completes the proof.

This and Theorem 6.1 immediately yields the following generalization
of Theorem 6 in [9].

Theorem 7.2. Let HK ⊆ O(Ω, E) be a reproducing kernel Hilbert module and
g be a good kernel on Ω with g−1 a polynomial. Then the following assertions
are equivalent:

1. g−1(Mz,M
∗
z ) ≥ 0 on HK .

2. There exists a kernel L on Ω such that K = gL.
3. There exists a Hilbert space E∗ such that HK dilates to Hg ⊗ E∗.
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We now turn to the study of submodules of good reproducing kernel
Hilbert modules. To this end, we first need the following simple lemma.

Lemma 7.3. Let Hg on Ω be a good reproducing kernel Hilbert module over
C[z], with g−1(z,w) =

∑
k,l∈Nn aklz

kw̄l a polynomial. Let Pg(·,w0) be the
orthogonal projection of Hg onto the one dimensional subspace generated by
g(·,w0) ≡ 1. Then ∑

k,l∈Nn

aklM
k
z M

∗l
z = Pg(·,w0).

Proof. For each z,w ∈ Ω we compute

⟨
∑

k,l∈Nn

aklM
k
z M

∗l
z g(·,w), g(·,z)⟩ =

∑
k,l∈Nn

akl⟨Mk
z M

∗l
z G(·,w), g(·, z)⟩

=
∑

k,l∈Nn

akl⟨M∗l
z g(·,w),M∗k

z g(·, z)⟩

= (
k∑

i,j=0

zkw̄lakl)⟨g(·,w), g(·,z)⟩

= g−1(z,w)g(z,w) = 1

= ⟨Pg(·,w0)g(·,w), g(·, z)⟩.

This completes the proof of the lemma.

Let Hg be as in the previous lemma and E be a Hilbert space. Let S be
a submodule of Hg⊗E ; that is, S is a joint (Mz1 ⊗IE , . . . ,Mzn ⊗IE) invariant
subspace of Hg⊗E . Then S is a module over C[z] with module multiplication
operators Rz = (Rz1 , . . . , Rzn), where

Rzi = Mzi |S (i = 1, . . . , n).

We say that S is a Brehmer submodule if

g−1(Rz,R
∗
z) =

∑
k,l∈Nn

aklR
k
zR

∗l
z ≥ 0.

In the following we characterize Brehmer submodules in terms of partial
isometric multipliers. The idea of the proof is to invoke the dilation result,
Theorem 7.2, to submodules of good reproducing kernel Hilbert modules (cf.
[17]).

Theorem 7.4. Let E be a Hilbert space and g be a good kernel with g−1 a
polynomial. Let S be a submodule of Hg⊗E. Then S is a Brehmer submodule
of Hg⊗E if and only if there exists a Hilbert space E∗ and a partial isometric
multiplier Θ ∈ M(Hg ⊗ E∗,Hg ⊗ E) such that

S = Θ(Hg ⊗ E∗).

Proof. Let S be a Brehmer submodule, that is,

g−1(Rz,R
∗
z) ≥ 0.
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By Theorem 7.2, there exists a Hilbert space E∗ such that S dilates toHg⊗E∗.
Therefore there exists an isometry π : S → Hg ⊗ E∗ such that

πR∗
zi = (Mzi ⊗ IE∗)

∗π (i = 1, . . . , n).

Let i : S → Hg ⊗E be the inclusion map and Π = i◦π∗. Then Π : Hg ⊗E∗ →
Hg ⊗ E is a partial isometry and

ran Π = S,
and

Π(Mzi ⊗ IE∗) = (Mzi ⊗ IE)Π (i = 1, . . . , n).

This yields that Π = MΘ for some partial isometric multiplier ΘM(Hg ⊗
E∗,Hg ⊗ E) and S = Θ(Hg ⊗ E∗).

Conversely, let S = Θ(Hg ⊗ E∗) for some partial isometric multiplier
Θ ∈ M(Hg ⊗ E∗,Hg ⊗ E). Then

PS = MΘM
∗
Θ.

Hence

g−1(Rz,R
∗
z) =

∑
k,l∈Nn

aklR
k
zR

∗l
z

=
∑

k,l∈Nn

aklM
k
z PSM

∗l
z

=
∑

k,l∈Nn

aklM
k
z MΘM

∗
ΘM

∗l
z

= MΘ(
∑

k,l∈Nn

aklM
k
z M

∗l
z )M∗

Θ

= MΘPg(·,w0)M
∗
Θ (by Lemma 7.3)

≥ 0.

This completes the proof of the theorem.

Example. The weighted Bergman spaces A2
α(Bn) defined by (5.4) are repro-

ducing kernel Hilbert spaces defined on Ω = Dn. The corresponding kernel
gα is given by (5.5) and is easily seen to be a good kernel. Moreover,

g−1
α (z,w)−1 = (1−

n∑
i=1

ziw̄i)
α+n+1, z,w ∈ Bn

is a polynomial for α ∈ N. Therefore Theorem 7.4 yields a characterization of
Brehmer submodules of A2

α(Bn)⊗ E for nonegative integers α. In particular,
for α = 0 one obtains the case of the classical Bergman space.

Now we consider the important case when Ω = Dn and Hg = H2(Dn)
and n ≥ 2. A submodule S of H2(Dn) ⊗ E is said to be doubly commuting
(cf. [18]) if

[R∗
zi , Rzj ] := R∗

ziRzj −RzjR
∗
zi = 0,

for all 1 ≤ i ̸= j ≤ n.
The next theorem is proved in [18].
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Theorem 7.5. A submodule S of H2(Dn)⊗E is doubly commuting if and only
if there exists a Hilbert space E∗ and an inner multiplier Θ ∈ M(H2(Dn) ⊗
E∗,H2(Dn)⊗ E) = H∞

B(E∗,E)(D
n) such that

S = Θ(H2(Dn)⊗ E∗).

In the following, we prove that the class of doubly commuting submod-
ules and the class of Brehmer submodules of H2(Dn)⊗ E are the same.

Theorem 7.6. Let E be a Hilbert space. Then S is a Brehmer submodule of
H2(Dn)⊗ E if and only if S is a doubly commuting submodule.

Proof. If S is a doubly commuting submodule, it follows from Theorem 7.5
and Theorem 7.4 that it is a Brehmer submodule.

Conversely, supose S is a Brehmer submodule. By Theorem 7.4, there
exists a Hilbert space E∗ and a partial isometry MΘ : H2(Dn) ⊗ E∗ →
H2(Dn)⊗ E , for some multiplier Θ ∈ H∞

B(E∗,E)(D
n), such that

S = Θ(H2(Dn)⊗ E∗).

It is easy to see that the closed subspace kerMΘ is a submodule of H2(Dn)⊗
E∗. We claim that the orthogonal of kerMΘ is also a submodule of H2(Dn)⊗
E∗. Indeed, if f ∈ (kerMΘ)

⊥, then

∥f∥ = ∥MziMΘf∥ = ∥MΘMzif∥ ≤ ∥Mzif∥ = ∥f∥,

and hence the inequality becomes an equality. But then

∥MΘMzif∥ = ∥Mzif∥,

yields zif ∈ (kerMΘ)
⊥ for all i = 1, . . . , n, and hence (kerMΘ)

⊥ is a submod-
ule of H2(Dn)⊗E∗, or equivalently that (kerMΘ)

⊥ is a joint (Mz1 , . . . ,Mzn)-
reducing subspace ofH2(Dn)⊗E∗. Now the reducing subspaces ofH2(Dn)⊗E∗
are known to be of the form H2(Dn) ⊗ Ẽ∗ for some Ẽ∗ ⊆ E∗. Then S is the
image of the isometric multiplier MΘ|H2(Dn)⊗Ẽ∗

, so S is doubly commuting

by the result quoted above. This completes the proof of the theorem.
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